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Abstract Risk management in urban planning is of increasing importance to mitigate the

growing amount of damage and the increasing number of casualties caused by natural

disasters. Risk assessment to support management requires knowledge about present and

future hazards, elements at risk and different types of vulnerability. This article deals with

the assessment of social vulnerability (SV). In the past this has frequently been neglected

due to lack of data and assessment difficulties. Existing approaches for SV assessment,

primarily based on community-based methods or on census data, have limited efficiency

and transferability. In this article a new method based on contextual analysis of image and

GIS data is presented. An approach based on proxy variables that were derived from high-

resolution optical and laser scanning data was applied, in combination with elevation

information and existing hazard data. Object-oriented image analysis was applied for the

definition and estimation of those variables, focusing on SV indicators with physical

characteristics. A reference Social Vulnerability Index (SVI) was created from census data

available for the study area on a neighbourhood level and tested for parts of Tegucigalpa,

Honduras. For the evaluation of the proxy-variables, a stepwise regression model to select

the best explanatory variables for changes in the SVI was applied. Eight out of 47 variables

explained almost 60% of the variance, whereby the slope position and the proportion of

built-up area in a neighbourhood were found to be the most valuable proxies. This work

shows that contextual segmentation-based analysis of geospatial data can substantially aid

in SV assessment and, when combined with field-based information, leads to optimization

in terms of assessment frequency and cost.
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Abbreviations
DSM Digital surface model

nDSM Normalized digital surface model

DTM Digital terrain model

GIS Geoinformation System

OOA Object-oriented analysis

PV Physical vulnerability

SV Social vulnerability

SVI Social Vulnerability Index

TTA Test and training areas

1 Introduction

In recent decades the number of natural disasters has been increasing, affecting a growing

number of people by causing extensive loss of life and property damage. Every populated

place faces a certain risk to be affected by a disaster, the size of which depends on location-

specific (i) hazards present, (ii) vulnerability and (iii) the number of elements at risk

(Fig. 1). This relation can be expressed as:

Risk ¼ f hazard; vulnerability; elements at riskð Þ ð1Þ
Disaster management tools are available to help minimize the risk and thereby the

impact of a hazardous event (Fig. 1) but require detailed knowledge about the risk a

particular area is facing.

Risk analysis encompasses the assessment of all factors shown in Eq. 1. The hazard, i.e.

the probability of a potentially damaging event with a certain magnitude to occur (Cardona

2003), can be expressed in absolute values, as can the number of elements at risk. Methods

to evaluate these physical concepts have been shown in previous studies (Bacon et al.

Fig. 1 Disaster management cycle with the position of social vulnerability assessment
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1997; Giardino et al. 2005; van Westen et al. 2005). Vulnerability, on the other hand, is

more multi-faceted. In addition to the social and physical sides, also environmental and

economic aspects can be considered, resulting in a variety of research perspectives and

term definitions. Rashed and Weeks (2003a) see vulnerability as an ill-posed problem

defined by multiple solutions and uncertainty about the concepts, rules and principles

involved to reach these solutions. Physical vulnerability (PV) refers to the properties of

physical structures that determine their potential damage in case of a disaster (e.g. material

type and construction quality). Theoretical rules and considerations exist for its assessment,

although a comprehensive assessment is challenging as a detailed database is required

(O’Hare and Rivas 2005). Due to the sound conceptual basis, given adequate data avail-

ability, PV is relatively straightforwardly assessed and frequently used synonymously with

vulnerability in general. This results in implicit neglection of SV, which refers to the socio-

economic circumstances and individual characteristics that make people susceptible to the

impact of a hazardous event (Cutter et al. 2003). In this study the approach by Clark et al.

(1998) is applied, defining SV as ‘‘people’s differential incapacity to deal with hazards,

based on the position of the groups and individuals within both the physical and social

worlds’’, which has to be assessed with respect to the particular hazard or combination

thereof (e.g. floods and/or landslides; Coburn et al. 1994). Rashed and Weeks (2003b)

further discussed that vulnerability can have different sources. It can either be inherent, e.g.

due to the affiliation to a certain marginalized group (persistent vulnerability), or result

from a choice, e.g. people choosing to live in a hazard-prone environment (situational

vulnerability). This can also be seen as the difference between ‘who you are’ and ‘where

you are’, respectively (Rashed and Weeks 2003a).

Emdad Haque and Etkin (2007) point out the significance of societal dimensions in

hazard analysis, and thereby in risk analysis. At the moment, SV still lacks a broadly

accepted definition, though several examples for its assessment exist (Briguglio 2003; Haki

et al. 2004), based on indices derived from the analysis of census data (Cutter et al. 2003;

Dwyer et al. 2004) or from data collected using community-based methods (Flint and

Luloff 2005; Allen 2006). Census data, however, are collected for a different purpose and

consequently neglect important information about hazard perception and mitigation abil-

ities. Moreover, they are, if at all, only available on neighbourhood level or coarser, and

with a temporal resolution of no more than 5–10 years. Community-based surveys on the

other hand are very detailed but also time-consuming and lead to results that can be

subjective and are difficult to up-scale (Birkmann 2005; Villagrán de León 2006). Both

traditional approaches used for SV assessment thus can provide important information yet

have limited efficiency and/or transferability. Additionally, the generally low temporal

resolution of censuses and of community-based surveys that go beyond very local multi-

temporal studies are poorly suited to capture the dynamic character of SV in an operational

manner.

This work builds on recent studies that have identified physical expressions of SV.

For example, Wu et al. (2002) analysed housing structures and the built environment in a

GIS-based study of SV, similar to Clark et al. (1998) who also studied the link to land

use and transportation infrastructure and Rashed and Weeks (2003b) who considered the

physical and social conditions to be intricately linked, making the former indicative of

the latter.

The objective of this work was to test the utility of lidar, optical satellite and GIS data to

derive SV-relevant information by using physical proxy variables to describe not-directly

observable phenomena, with better time and cost efficiency and higher temporal resolution

compared to the traditional analysis methods. Proxies are measurable variables that can
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provide insight into phenomena that cannot be directly observed or measured, but which

are conceptually linked.

Physical expressions of social vulnerability (SV), such as settlement type or vegetation

density, can be best expressed in terms of spectral, geometric and topological character-

istics of land cover elements forming complex urban units. Therefore, the proxies in our

study were addressed in a framework of contextual object-oriented analysis (OOA), which

to our knowledge has not been employed before in SV research. Additionally, the focus is

laid on Honduras, a less developed country where spatial and physical factors of SV are

even more pronounced (Rashed and Weeks 2003b), where current census data as used by

Cutter et al. (2003), Clark et al. (1998) and Wu et al. (2002) are often not available, and

where disaster casualty figures show vulnerability to be the highest.

2 Study area

The test area for this study contained 87 neighbourhoods (in total ca. 3 9 3 km) in Teg-

ucigalpa, the capital city of Honduras. Tegucigalpa is located at about 14� N and 87� W in

the highlands of central Honduras at an elevation of approximately 1,000 m asl (Fig. 2).

With 53.0% of the population living below the national poverty line (UNDP 2005),

Honduras is a country with medium development (UNDP 2005) and limited industrial and

commercial infrastructure. Tegucigalpa today has more than one million inhabitants and is

growing steadily (on average about 2.8% p.a. from 1988 to 2001) in an unplanned manner,

also into hazard-prone terrain, such as steep slopes surrounding the city and along the

rivers, often the only available and affordable spaces for building construction (Angel et al.

2004). The proximity to the labour market and urban facilities is for most migrants more

important than living in a safe environment, a known worldwide phenomenon (O’Hare and

Rivas 2005).

Ecological and land use changes, e.g. by deforestation of slopes, straightening of rivers

and loss of natural flooding areas, also result from city growth, which in turn increase the

Fig. 2 Location of the study area Tegucigalpa in Honduras
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city’s vulnerability (Davidson 2006). This became apparent during Hurricane Mitch that

struck Tegucigalpa in 1998 and triggered numerous landslides on deforested slopes and

severe flooding, which caused thousands of fatalities and destroyed large parts of the city’s

infrastructure, that were located in hazard-prone areas (CINDI 1998).

3 Geoinformatics in disaster management

The utility of geoinformatics tools for all aspects of disaster management has been amply

illustrated in the literature. In particular remote sensing technologies have been used for (i)

predisaster applications, such as scenario modelling (Iverson et al. 1998; Tralli et al.

2005), (ii) forecasting of events (e.g. of volcanic eruptions or windstorms), (iii) early

warning and event monitoring (Ramsey and Flynn 2004) and (iv) damage assessment and

monitoring of land use changes after a disaster (Kerle 2002; Arciniegas et al. 2007).

Progress is also being made in the use of remote sensing data in quantitative risk

researches, e.g. for hazard analysis (Lee et al. 2004), assessment of urban vulnerability

including SV (Rashed and Weeks 2003a), or vulnerability of buildings (Müller et al.

2006). So far, most studies are limited to the description of one or few components of risk

(Eq. 1) or provide a comprehensive assessment of only the factors that can be directly

measured (van Westen et al. 2005).

The main limitations in the application of geoinformatics in comprehensive risk man-

agement are (i) the high data demand and cost, (ii) the need for an integrated analysis of

multi-type/format data, (iii) the need for frequent risk assessments and database updating

due to rapid urbanization and (iv) that information also about concepts that are difficult to

map directly, such as SV, has to be included. However, the field is also benefiting from

developments in other remote sensing areas, such as automatic mapping and classification

of buildings with InSAR (Balz and Haala 2003; Stilla et al. 2003), laser data (Dash et al.

2004), or Ikonos imagery (Fraser et al. 2002). Rashed and Weeks (2003b) focused the

assessment of vulnerability of urban places (urban vulnerability) using pixel-based spatial

metrics and a spectral unmixing approach. Our study focuses on the assessment of SV

based on multi-source remote sensing and GIS data, using contextual information and

multi-scale interpretation implemented in OOA. Contextual information provides knowl-

edge about distances (e.g. to hazard zones) and the local environment (e.g. slope) of a

building, while multi-scale analysis considers different spatial dimensions, ranging from

sub-building features to entire city districts. The resulting delineation and application of

proxy variables, as explained in Sect. 4, support the identification of parameters that are

non-physical and not directly visible, hence which cannot be assessed from satellite data

using alternative methodologies, such as pixel-based analysis.

4 Methodology

4.1 The advantages of OOA for vulnerability analysis

Image classification has traditionally been done using pixel-based analysis, where each pixel

is classified based on its spectral characteristics and without contextual information. More

recently developed OOA methods aim at imitating human cognition and begin with seg-

mentation of image data on different spatial scales that depend on the desired level of

generalization, the spatial resolution of the image, as well as the inherent scale of the objects.
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For example, chimneys can be preserved as individual objects in one level, while in another

level entire buildings constitute the smallest spatial unit. The result of the segmentation

process is an image hierarchy that contains different levels with objects of different sizes,

where each object knows all properties of its sub-, super- and neighbour-objects (Baatz et al.

2004). All of those, together with the objects’ geometric and spectral characteristics, can

then be incorporated in the interpretation of the resulting image segments at only one or at

several segmentation levels (Blaschke and Strobl 2001; Baatz et al. 2004). Small spectral

inhomogeneities that normally lead to wrongly classified pixels are averaged out during the

segmentation, allowing increased classification accuracies. However, previous studies also

showed that segmentation alone does not improve the classification result, but rather that a

proper integration of semantic information is needed in the post-segmentation analysis (Gao

et al. 2007). In the context of risk, this is critical as the position and spatial arrangement of

image objects in their natural and man-made environment strongly determine the SV (Clark

et al. 1998; Wu et al. 2002; Rashed and Weeks 2003b).

Object properties in this study comprise spectral and textural information, as well as

shape characteristics, object size and distance to all other image objects, which were

analysed in Definiens. Beneficial is that both image data and auxiliary raster and vector

data types, such as elevation models, thematic layers or other GIS data, can be included in

image segmentation and classification. This allows class descriptions that support a

detailed land cover and land use assessment by providing a rich contextual analysis

framework. Specific classes, such as buildings within a hazard zone or buildings on steep

slopes, can be identified directly (Sect. 4.6). Also GIS data can be directly used as a basis

for class descriptions, as was done here with polygon outlines of a cemetery and rivers. The

combination of spectral features with shape characteristics and auxiliary data yields classes

that are suitable for a comprehensive assessment of living environments, and which in turn

are indicators for the assessment of SV. These indicators are then expressed using object-

based proxy variables that have previously been used in PV assessment, e.g. building

heights for flood vulnerability, but to our knowledge not in a SV context. Figure 3 presents

the methodology of this study, while Table 1 gives an overview of the data used.

4.2 Data pre-processing

The panchromatic and multi-spectral Quickbird images acquired simultaneously were

merged using wavelet transformation (Hirschmugl et al. 2005), while the RecourseSat-1

(IRS-P6) image remained unaltered. The lidar-derived digital surface model (DSM)

available for a part of the study area was used to extract a digital terrain model (DTM),

employing the local point cloud segmentation procedure described in Vosselman et al.

(2004). The difference between the DSM and the DTM in turn provided absolute heights of

all objects situated on the ground surface, such as houses and trees. Points from the lower

resolution DTM vector set available for the entire city were interpolated using triangulation

and the slopes calculated. Additional information from thematic city maps was digitized

where relevant (e.g. building use and distribution of service infrastructure). All available

GIS data (Table 1) were matched and brought to the same reference system.

4.3 Segmentation of the Quickbird image

Unlike the DTM, the normalized DSM (nDSM, Sect. 4.2) that contains absolute heights

of all objects on the surface was only available for a small part of the study area. Thus
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the image analysis was performed both with and without the nDSM (Project 1 and

Project 2, respectively), with image segmentation in both cases also incorporating the

pansharpened Quickbird image and the digitized outlines of the cemetery and the rivers.

Different segmentation parameters were applied to create three image levels for the

classification of the Quickbird image only and four for the classification of the Quickbird

image in combination with the nDSM (Table 2). The additional level here was used to

distinguish flat and built-up areas based on data from the nDSM. The segmentation

parameters were found based on trial-and-error and evaluated by visual analysis. Even

though Project 2 was just a subset of the first, new segmentation parameters had to be

found to ensure suitable segment borders also reflecting the additional nDSM data, such

as building outlines. The lack of a methodology for finding objective parameters and

evaluation tools other than visual analysis is a known limitation of Definiens, or indeed

segmentation-based analysis in general, although several groups are working on ways to

overcome this limitation (e.g. Espindola et al. 2006; Zhang and Maxwell 2006).

Fig. 3 Main steps of the analysis and most relevant results
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4.4 Classification of the Quickbird image

Twelve main land use/land cover classes were initially classified from the data set (Fig. 3).

For the assessment of SV, the most relevant classes are built-up areas (buildings) and roads

as the principal indicator for habitation, and vegetation for a characterization of the

neighbourhood (Ridd 1995; Rashed and Weeks 2003b). Class descriptions were done using

representative samples from the study area (test and training areas, TTA) and by creating

Table 1 Raster and vector data used for this study in Tegucigalpa

Type Source Date Format Resolution

Quickbird Digital Globe 12/2000 Raster mse: 2.4 m; panf:
0.61 m

ResourceSat P-6 NRSAb 04/2006 Raster 5.8 m

DTMa (based on point data) PMDNc n.a. Vector 1.5 m

Gridded Lidar DSM USGSd 03/2000 Raster 1 m

Hazard maps (floods and landslides) USGS 2002 Vector 1:10,000

Hurricane Mitch damage maps (flood and
landslide outlines)

USGS 2002 Vector 1:10,000

Main river network Princeton
University

2000 Vector 1:10,000

Various infrastructure (from maps) n.a. 2002 and
2004

Vector n.a.

a DTM: digital terrain model
b NRSA: National Remote Sensing Agency
c PMDN: Proyecto de Mitigación de Desastres Naturales
d USGS: United States Geological Survey
e ms: multi-spectral
f pan: panchromatic

Table 2 Segmentation parameters and extracted land use/land cover classes for the analysis of the pan-
sharpened Quickbird image only (upper part) and in combination with the nDSM (lower part)

IL Classes SP Col. Comp.

OOA of the pansharpened Quickbird image

1 Barren land, barren road, built-up, grassland, graves, paved roads, river, shadow,
swimming pools, thin vegetation, trees

30 0.7 0.9

2 Trees, vehicles, graves 30 0.7 0.9

3 Barren land, barren road, paved roads, shadow, built-up area (7 roof types),
swimming pools, grassland (dry, medium, healthy), thin vegetation

45 0.7 0.9

OOA of the pansharpened Quickbird image in combination with the nDSM

1 Flat, high 30 0.7 0.9

2 Barren land, built-up, grassland, paved roads, river, shadow, swimming pools, trees,
thin vegetation

30 0.7 0.9

3 Trees, vehicles 30 0.7 0.9

4 Barren land, paved roads, shadow, built-up area (7 heights), swimming pools,
grassland (dry, medium, healthy), thin vegetation

50 0.7 0.9

Image levels 1 and 2, respectively, contain the final classification result

Abbreviations: IL, image level; SP, scale parameter; Col., colour criterion; Com., compactness
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knowledge-based fuzzy sets. Fuzzy sets refer to the object properties (features), such as

spectral values, shape characteristics, relations to other image objects, or information from

thematic layers (such as elevation data). They determine a range of values for a certain

feature that is characteristic for the respective class and are expressed mathematically in

membership functions (Baatz et al. 2004). A main aspect of Project 1 was the distinction

of different roof materials as a principal descriptor of housing types, based on spectral

information, while Project 2 yielded a classification of buildings based on their height.

Seven different roof types were distinguished in the study area, although additional ground

truth information or better multi-/hyperspectral data would be necessary to determine the

actual material of the roof types. Since neither was available for this study, it was only

tested if roof material in principle can serve as a proxy for SV (see Sect. 4.6). Different

vegetation types were distinguished using NDVI values, texture measures and visual

interpretation (Myint 2007). Finally, two main road qualities (paved and barren), critical

indicators of urban living conditions, were identified based on spectral properties. The

overall classification accuracy, calculated using independent TTAs, was 84.3% for the

image without the nDSM, and 89.1% for the image with the nDSM. Thus, elevation

information is a valuable contribution for the extraction of building footprints and for

certain class descriptions, e.g. for the separation between paved roads and spectrally

similar roof types.

4.5 Texture analysis of the Quickbird and IRS-P6 image

Image texture describes the distribution of grey values in an image and thus characterizes

the homogeneity of settlements, and can be calculated in different ways, e.g. using mea-

sures such as homogeneity, variance and skewness (Tuceryan and Jain 1998; Herold et al.

2003). The homogeneity of the Quickbird image was calculated using a Grey Level Co-

occurrence Matrix (GLCM) in Definiens, which is based on the frequency of specific pixel

combinations in the image (Baatz et al. 2004). Variance and skewness were calculated in

Erdas Imagine for the Resource-Sat image (see Table 3).

4.6 Delineation of proxy variables

Proxy variables can be statistical census data, grey values of single pixels (e.g. Lawrence

et al. 2002), or data related to diverse object characteristics. They are frequently used in

disaster research where the parameter of interest cannot be directly assessed. Cutter et al.

(2003) identified a total of 17 measures, such as age, gender or socio-economic status to

characterize SV. Similarly, Rashed and Weeks (2003b) used vegetation ratios as a proxy

for wealth of a neighbourhood, while Wu et al. (2002) considered land use to be a general

proxy of a place’s exposure to flood hazard. Given our focus on image-derived informa-

tion, the following indicators were found to be relevant for SV assessment and are expected

to have physical expressions:

• Socio-economic status

• Commercial and industrial development

• Service infrastructure/lifelines, and distance to those.

Table 3 shows how the original indicators for SV assessment were translated into

proxy variables that can be primarily delineated from remote sensing data. It was

found that the socio-economic status of a household in Tegucigalpa can best be
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described via the settlement type where it is located, and by its topographic location.

Areas with only little vegetation and poor road quality, little economic and infra-

structural development and/or situated in hazard-prone areas such as steep slopes were

considered to have the lowest coping capacities and thus to be most socially vulner-

able. Tegucigalpa, similar to other Central American capital cities, also has more

luxurious neighbourhoods located in areas with steeper slopes, for reasons more related

to the view, seclusion or better environmental characteristics such as air quality. This

generally results in higher situational and lower persistent vulnerability. Such areas can

still be identified based on spatial metrics related to building patterns and surfaced

road and vegetation ratios.

To describe the settlement type, the proportion of built-up and vegetated area was

calculated for each neighbourhood of the city (see outlines in Fig. 4). Proportion measures

are spatial metrics originating from ecology that characterize and compare settlement

areas, allowing spatial variations and temporal changes in the urban morphology to be

quantified (Herold et al. 2003; Rashed and Weeks 2003b; Herold and Clarke 2007). This

study was devised as a monotemporal assessment; thus, the calculation of spatial metrics

focused on proportion measures to characterize neighbourhoods. For example, roads were

Table 3 Criteria for the assessment of SV with spatial expression and explanation of the delineated proxy
variable

Original indicator Parent proxy Supporting proxy

Socio-economic
status

Settlement
type

Proportion of built-up
and vegetated area
(4 proxies)

Proportion of area per administrative
neighbourhood covered with buildings
only, buildings and roads, vegetation,
and barren land (after Ridd 1995)

Road conditions (1) Proportion of paved road of all roads in
the neighbourhood

Roof type (7) Seven spectrally different roof materials

Available infrastructure
(1)

Amount of infrastructure per
neighbourhood

Texture (10) For IRSP-6 image: mean of variance and
skewness, standard deviation of
variance and skewness for 3 9 3 pixel
window;

For Quickbird image: mean of variance
and skewness for 3 9 3 pixel window,
mean and standard deviation of
homogeneity in 45� direction

Topographic
location

Slope position (12) 12 slope classes in 5� intervals

Proportion of buildings
in hazard zone (2)

Proportion of buildings in landslide
hazard zone and flood hazard zone
based on all buildings in the
neighbourhood

Commercial and
industrial
development

Commercial
development

Building heights (7) 1-, 2-, 3-, 4-, 5-, 6- and more than
6-storey buildings

Distance to
lifelines

Distance to
lifelines

Distance measures (3) Distance of each building to next
infrastructure (0–100, 100–250,
[250 m)

The detailed number of proxies is given in parentheses
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separated into paved and barren roads, yielding the fraction of paved roads within the total

road network in each neighbourhood. A high proportion of paved roads corresponds to a

high development of the neighbourhood.

Fig. 4 Scores from the social vulnerability index per neighborhood (bottom) with the pansharpened
Quickbird image as reference (top)
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Building types and state have been identified previously as physical expressions of SV

(Cutter et al. 2003; Rashed and Weeks 2003b). Hence in imagery, largely restricted to a

vertical perspective, the roof construction material may be a useful proxy for the socio-

economic status of the building occupants. Due to the lack of ground data on actual roof

materials, it was tested whether different materials that can be distinguished in the satellite

data have a statistical potential to explain SV variation. Seven different roof types were

classified from the Quickbird image, and the proportion of each roof type calculated

compared to the total area covered by buildings.

The available service infrastructures (commercial centres, transport infrastructure,

institutional or governmental buildings, gas stations, universities) were digitized from

existing city maps (Table 1) and quantified for each neighbourhood as another indicator for

development. In case such infrastructure information is not available for a given study area,

visual image analysis or tools such as Google Earth could be used to identify large

commercial areas or transport hubs such as bus or train stations.

To describe the topographic location, the slope position was calculated from the DTM,

to which each image object was then associated. Using membership functions, only the

built-up areas were masked and combined with the slope information. Twelve slope classes

in 5� intervals, from 0� to 60�, were delineated. As another supporting proxy variable, all

buildings in a flood or landslide hazard zone (delineation based on existing USGS hazard

maps prepared in 2002) were masked out, and the percentage compared to all buildings in

the neighbourhood calculated.

Building heights were delineated from the lidar data set that covers only a part of the

study area (Table 2). Using this supporting proxy variable, the commercial development

was characterized. In Tegucigalpa, high buildings ([7 stories) can to a large extent be

associated with commercial or industrial development, which in turn is regarded as an

indicator for low SV values.

Lastly, three possible distances to service infrastructure and lifelines (\100, 100–250,

[250 m) were defined using membership functions, relating the position of each building

to those features.

A total of 47 supporting proxy variables (Table 3) were delineated from the digital data

sets to describe the three original indicators for SV (first column in Table 3). While

delineating proxy variables, information about the environment was derived from different

data sources as shown in Table 1. By using membership functions and fuzzy rule sets, each

classified image object was characterized according to its (i) slope, (ii) distance to hazard

zone and (iii) distance to service infrastructure. In addition, spatial metrics (Herold et al.

2003; Rashed and Weeks 2003b) were calculated from the classification-based land use/

land cover information to describe the settlement characteristics for each administrative

neighbourhood.

5 Validation of the derived indicators

5.1 Delineation of a Social Vulnerability Index (SVI)

After the extraction of the 47 proxies, their relevance as predictors of SV was tested. In a

previous study, SV was calculated based on spatial metrics and compared with values

derived from multi-criteria GIS analysis (Rashed and Weeks 2003b). Here, using a

traditional method for comparison, a reference SV map on a neighbourhood level in

Tegucigalpa based on the 2000 census data and the method used by Cutter et al. (2003)
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was calculated. Seven main variables were available: (i) gender, (ii) literacy, (iii) roof

material, (iv) wall material, (v) water availability, (vi) waste disposal and (vii) building

type.

These variables differ from those employed in image analysis. This complicates a direct

comparison of the results but also reflects the reality of the different methods with which

SV is being assessed. Rashed and Weeks (2003b) faced a similar problem when they used

an index of wealth (based on census data) and an index of vulnerability (based on HAZUS

seismic risk simulations) to assess the explanatory potential of image-based SV proxies.

The alternatives for each variable (e.g. male and female for gender) were ranked

according to their impact on SV based on previous research (Ranganath 2000; Cutter et al.

2003; Haki et al. 2004) and field observations (Angel et al. 2004). Pairwise comparison

(Saaty 1980) was used to assign weights to all alternatives based on their ranking. A Social

Vulnerability Index (SVI) adapted from Haki et al. (2004) was then applied to calculate the

SV per neighbourhood based on the census data:

SV ¼
Xm

i¼1

viqi ð2Þ

where SV is the vulnerability score for each neighbourhood, vi is the weight derived from

the pairwise comparison for each variable (values ranging from 0 to 1), and qi is the

relative frequency of the variable per neighbourhood (values ranging from 0 to 1). Cal-

culated values for each neighbourhood are shown in Fig. 4 (bottom). A similar additive

calculation was also used by Cutter et al. (2003), whereas Wu et al. (2002) normalized SV

values to range between 0 and 1. This presents a conceptual challenge for quantitative risk

assessment. While physical or economic vulnerability characterize a clearly quantifiable

degree of loss, a SV concept that links to a person’s ability to anticipate, cope with, resist to

and recover from the impact of a hazardous event (Wisner et al. 2004) faces challenges

such as scaling. Indeed, Adger and Kelly (1999) and Smit and Pilifosova (2003) focus on

understanding functional relationships rather that calculating absolute SV values. For

Rashed and Weeks (2003a), an assessment of SV in absolute terms is not possible, as it is

continuously modified and varies over space and time. Hence, our principal aim is to

identify variables that help explain how SV is generated, and it is concurred with Clark

et al. (1998) for whom the main purpose of vulnerability maps is the ability to identify

threatened populations and areas on which to focus limited resources.

5.2 Quantitative spatial analysis

A two-step procedure to identify the significant variables to explain SV was used. First, a

stepwise regression model was used, based on ordinary least squares, to select those

variables out of the set of 47 proxy variables that significantly contribute to explaining the

vulnerability score SV from the SVI (Draper and Smith 1981; Rashed and Weeks 2003b;

Jain 2005). In a stepwise regression, the variables are entered and/or removed successively

and thus accepted for inclusion if a tolerance threshold pIN is exceeded for entrance and a

pEX is no longer exceeded for exclusion. After testing various values for pIN, it was decided

to use a pIN-value of 0.15. These values were large enough to allow also entering of less

strongly related explanatory variables into the regression model, hence remaining on the

safe side. A somewhat lower pEX value of 0.1 ensured that no endless iterations occurred.

The second step used spatial regression to estimate values of the coefficients on

the comprehensive set of explanatory variables thus obtained (Cressie 1991). The
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neighbourhood structure was identified and a simultaneous autoregression (SAR) spatial

covariance family was applied.

The results of the analysis are given in Table 4. The model explained almost 60% of the

changes in SV (R2 = 0.595). The following can be noticed:

• A high proportion of built-up areas and of buildings on gentle slopes corresponds to

low SV.

• A high proportion of buildings on medium slopes, buildings exposed to landslide
hazard and the abundance of two specific roof types corresponds to high SV values.

• A high amount of infrastructure corresponds to high SV, although at low significance.

This is somewhat surprising and most likely this variable provides a correction on the

other variables, compensating some of the variation in the variables with a higher

significance, such as buildings at landslide hazard. It may also be the case that the

amount of service infrastructure and lifelines is higher around buildings exposed to

landslide hazard because of planning considerations by the city developers in the past.

• No significant influence was found for the selected texture measures, the amount of
buildings at flood risk and the distance to infrastructure (e.g. lifelines).

• Absolute sizes of the effects can be large (18.477 for slope9 and -157.1 for slope12),

but these values correspond to very low fractions occurring in the study area (0.00026

for slope12 and 0.0026 for slope9).

The variables impervious and slope11 were entered at intermediate stages, but after

inclusion of built3 and propbuilt, the variable impervious was removed from the model, as

it did not significantly contribute to explaining the variation in SV. Similarly, slope11 was

removed after inclusion of slope9 and slope12. Also the model was compared thus selected

with models obtained with pIN-values equal to 0.05, 0.1 and 0.2, but the original model was

found to be the best interpretable one.

For the lidar data, the proportion of buildings with more than 6 floors (stor7), inter-

preted as an indicator for commercial development, was found to have a significant

explanatory value (R2 = 0.451), with higher proportions indicating lower SV.

Although the regression results are largely plausible and confirm the hypothesis that

image-derived parameters can provide information on the distribution of SV, it also signals

a potential problem. Table 4 shows that the higher the proportion of buildings on medium
slopes (slope9) the higher the SV, with an opposite effect for buildings on very steep slopes
(slope12).

The likely reason is the occurrence of many zeros in the dataset, in particular when the

fraction of buildings on steep slopes is considered. These fractions are zero in many

neighbourhoods, reflecting the low number of steep slopes in the study area. In the analysis

this has led to an anomaly where the non-zero observation for these classes has a dis-

proportionately large effect.

Thus, it may be preferable to aggregate such variables into fewer classes.

6 Discussion

The frequent lack of suitable data, as well as conceptual difficulties, explain why many

studies do not incorporate SV assessment as a critical aspect of a comprehensive risk

assessment. Existing methods either use data with limited suitability and availability

(census data) or rely on detailed house-to-house surveys that are insightful but preclude

wider and more frequent use. The goal of this study was to test the utility of indicators of
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SV from high resolution images and other spatial data using OOA. Proxy variables, i.e.

variables that translate and express the not-directly observable concept of SV, had to be

defined and identified, and their explanatory capacity had to be assessed. The 47 proxy

variables delineated were tested in a stepwise regression analysis and could explain almost

60% of the variation of a reference SVI calculated from census data with conventional

methods (Wu et al. 2002; Cutter et al. 2003).

The initial land cover/use classification of the pansharpened Quickbird image using

OOA is a critical basis for the delineation of spatial metrics and the advanced land use

classes that incorporate GIS data (e.g. hazard zones) and the DTM (Table 3). Based on this

information, contextual analysis allowed suitable proxy variables to be defined that

describe non-physical indicators of SV. In this study the high spatial resolution was more

valuable than high spectral resolution, as many relevant details, such as single houses,

could be identified. The incorporation of lidar data was very useful to extract building

heights. Since such data are rather cost-intense, they might not be always available.

Nevertheless, building heights can also be extracted from stereo-images or orthophotos

(Fraser et al. 2002). A higher spectral resolution might have allowed a more detailed

assessment of construction and roof materials. Indeed, Rashed and Weeks (2003b) based

their land cover assessment for SV analysis on Landsat TM data.

The proxy variables defined described the non-physical concept of SV to a substantial

degree, though it is clear that SV assessment also comprises a range of indicators that have

no physical expression and thus cannot be delineated from image data, e.g. gender, age,

knowledge about the hazard and individual disaster preparedness (Cutter et al. 2003).

Although no comprehensive assessment of SV is feasible with image data alone, it can help

overcome the low spatial detail of census-based SV assessment. In Cutter et al.’s approach,

the spatial resolution is limited to the 3,141 US counties (with approximately 100,000

people in one census tract). Rashed and Weeks (2003b), who also used US census data,

also concluded that both the social and the physical aspects of SV need to be understood

and that thus census data alone are not sufficient. Finally, it has to be stressed that also SV

is hazard-dependent. For example, while meteorological hazards such as heatwaves

challenge an individual’s health coping capacities (Nakai et al. 1999), floods pose a more

immediate physical threat to younger and shorter people. In the SV analysis, weights have

to be assigned that correspond to such individual characteristics, leading to particular

challenges when multi-hazard vulnerability is to be assessed.

The method presented here can also help overcome high cost and limited spatial cov-

erage of ground surveys. Figure 5 illustrates the cost-benefit concept of an integrated

approach. The use of satellite data (solid lines) is efficient compared to house-to-house

surveys, comparatively easy to repeat and relatively low in cost per mapping unit, but by

itself not detailed enough for a comprehensive assessment of SV. Most detailed but also

most expensive and time-consuming are house-to-house surveys, while census data are

most efficient but least detailed (both in dashed line). In general, the higher the level of

detail, the higher the costs and the higher the time input required for data processing. The

gap between the dashed and the solid line shows the trade-off between costs, efficiency and

the level of detail. The level of detail is a relative measure compared to the alternative

method. The width of the cost-benefit area is mainly dependent on the accepted trade-off at

the considered scale. In general, the higher the level of detail required, the higher the costs

and the lower the efficiency.

Additionally, image data are available more frequently than census or ground infor-

mation and the methodology is generic, thus can be applied in other areas if adapted to the

data availability and scale of the area of interest, while also allowing the dynamics of SV to
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be captured. For the definition of proxy variables, local knowledge about the study area is

inevitable.

Although the proxies are generic to a large extent, they have to be adapted and eval-

uated to suit the specific situation. Most important is that the key factors that drive SV in

the specific region are recognized and translated into appropriate variables. However,

exactly such adaptation is also needed for alternative SV assessment methods. Census-

based approaches have to be modified depending on the variables available, while com-

munity-based work, be it based on focus groups or questionnaires, has to adapt to the local

setting, as well as hazards present.

It is argued that the optimal approach for SV assessment is a combination of both

traditional methods (analysis of census data and community-based surveys) and new geo-

informatics-based methodologies (OOA of high-resolution satellite and other spatial data).

The potential of OOA for the delineation of proxy variables has also yet to be fully

realized. The combination of different data sources and object information offers a variety

of possibilities to describe single segments or a group of adjacent segments (e.g. neigh-

bourhoods). The better the understanding of SV, the better the resulting proxy variables.

That means that the results and assessment methods based on remote sensing data can be

improved if more extensive input is given from social scientists that work on a definition

and indicators of SV. The increasingly rich conceptual basis for vulnerability assessment

emerging from previously disparate research fields (Eakin and Luers 2006) is particular

encouraging. Similarly, the better the relation between SV indicators and their physical

expression in urban morphology is understood, the more suitable and better adapted to non-

visible concepts the description of proxy variables can be.

Even if only data with medium spatial resolution are available, some relevant indicators,

such as settlement extent and texture measures for the characterization of the settlement,

can be delineated. Recent studies on satellite data interchangeability for urban risk

assessment showed that also medium resolution data, e.g. from Landsat TM, can be used to

delineate land use classes such as built-up areas and vegetation to a sufficient degree

(Rashed and Weeks 2003b; Shamaoma et al. 2006). Those were also the classes that

proved to be important for this study, and thus while high spatial resolution improves the

accuracy, medium resolution data can also be applied. However, this emphasizes also that

more than one method exists to calculate SV.

Fig. 5 Cost-benefit area of an integrated approach for the assessment of social vulnerability implementing
both traditional field surveys and remote sensing and GIS technology
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7 Conclusions

In this article it could be shown that OOA comprising the evaluation of contextual

information and the analysis of image segments on several scales is a valuable tool for the

delineation of a variety of proxy variables that can describe non-physical indicators of SV

that are not directly mappable.

These proxy variables were derived from air- and spaceborne imagery as well as GIS

data and successfully used to describe those indicators of SV that relate to the socio-

economic status of a household and to settlement characteristics of a neighbourhood. It can

be argued that, when used in conjunction with limited ground-based data and improved

spatial extrapolation techniques, it constitutes an optimized and more economical

approach. Thus, the methodology presented here can be considered as a significant con-

tribution to disaster management, especially for rapidly changing but data scarce areas.
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